
YAPP Communications for Taurus
Platform
November 2023

600-0055-000 Rev A

Version History

Rev Date Notes

A 2023-11-01 Initial Release

allocor.tech

Table of Contents
Version History 1
Table of Contents 2
Introduction 3
Interfaces 3

Electrical Interface 3
CAN 3
Serial 3

YAPP 4
UART (RS-232, RS-422), and Ethernet Framing 4
CAN Framing 5

CAN Message IDs 5
Single Frame CAN YAPP 5
Multi-Frame CAN YAPP 6

Computing the UART and Ethernet Frame IDs from the CAN ID 6
Multi-Frame Start 7
Multi-Frame Continued 8
Multi-Frame End 8

CRC Calculation 9
YAPP Data Types 10

YAPP Float Compression 10
Float 16 Example 10

Time 10
Taurus Messages 11

Taurus Command 11
Taurus Motor Data 11
Taurus Health 14

Examples 15
UART Stream Framing 15
Single CAN Frame: Taurus Command 16
Multiple CAN Frames: Taurus Motor Data Msg 18

proprietary and confidential 600-0055-000 Rev A page 2 of 19

allocor.tech

Introduction
The purpose of this document is to assist allocortech clients in implementing the Yet Another
Packet Protocol (YAPP) over RS-422/485, RS-232 or packed into CANmessages (CAN YAPP) in
order to communicate with allocortech’s Taurus Electronic Speed Controller (ESC) Platform.

Interfaces
Electrical Interface
Taurus devices all support CAN 2.0 interfaces which are electrically isolated from the DC Link
supply. Some Taurus platforms also support UART serial interfaces (e.g. RS232, RS485, RS422)
which are also typically isolated, but users should consult the device specification for the
specific device for details.

CAN
The isolated CAN interface on all of the Taurus devices supports CAN 2.0B. This includes
standard 11-bit identifiers as well as extended 29-bit identifiers as defined in the CAN 2.0
specification.

The YAPP protocol defined herein uses 29-bit identifiers to encapsulate the YAPPmessage
identifiers.

Serial
The UART serial interfaces, regardless of physical signal levels (i.e. RS232, etc.) are typically
configured at 500kbps, 8bit, no parity, and 1 stop bit (8N1.) This may be customized through
user settings or custom firmware as needed. By default, the Taurus may be configured to
reserve the serial interface for a user shell, but can be configured to emit a YAPP frame serial
stream.

proprietary and confidential 600-0055-000 Rev A page 3 of 19

allocor.tech

YAPP
UART (RS-232, RS-422), and Ethernet Framing
YAPPmessages sent via UART or Ethernet are encapsulated in a frame with a 12 byte header
and 4 byte footer as shown below.

YAPP Framing

Header Payload CRC

SYNC[2] Seq[1] CTL[1] ID[4] Size[2] RSVD[2] Size Bytes 32-bit CRC

Messages sent over CAN are similar, but are chunked and aspects of the ID and sequence
numbers are incorporated into the CAN ID. For more information about how CAN YAPP works,
continue to the YAPP over CAN section.

SYNC: Synchronization header of “YP”
Seq: Sequence number, can optionally be used to increment for every newly

created message under the given ID. By default this is not used on the
Taurus.

YAPP CTL: Control byte, always 0 for Taurus. The planned use for this field is to
differentiate important commands, responses, routine telemetry, and low
priority maintenance traffic.

ID: Little Endian YAPPmessage identifier
Size: Little Endian size of Payload blob in bytes
RSVD: Reserved bytes for future use
CRC: Little Endian cyclic redundancy check value protecting the YAPP header

and message payload computed from a Koopman Hamming distance 6
order 32 (aka CRC-32K/6.4) polynomial of 0x1'32c0'0699, and is computed
with a starting value of 0xFFFF'FFFF and non inverting output.

proprietary and confidential 600-0055-000 Rev A page 4 of 19

allocor.tech

CAN Framing
As the CAN protocol provides framing, YAPP over CAN is mostly limited to providing a chunking
mechanism for payloads greater than 8 bytes. Messages shorter than or equal to 8 bytes are
placed into a single CANmessage (or less than 64 bytes if CAN-FD is used.) CRC protection is
added to chunked frames as part of the chunk header as described below.

Note that Taurus currently does not support CAN-FD, but for completely

CAN Message IDs

The 29 bit CAN ID contains an ID, control bits, and a sequence number counter and is designed
to facilitate standard CAN prioritization and bus arbitration.

CAN YAPP 29 Bit Header
CAN IDs are shifted onto the bus most significant bit first.

Msg ID CAN CTRL

Bit
No.

28 27 26 25 24 23 22 21 20 19 18 17 16 15 14

YAPP CTRL Seq No

Bit
No.

13 12 11 10 9 8 7 6 5 4 3 2 1 0

Msg ID: 11 bits for 2047 IDs (1-2047.) In Allocortech’s code this value is always little
endian, but will be presented on the CAN bus big endian therefore
preserving CAN ID priority where lower IDs take precedence over higher
IDs.

CAN CTRL: 0 - Single Frame Message
1 - Start of Multi-Frame Message
2 - Middle of Multi-Frame Message
3 - End of Multi-Frame Message

YAPP CTRL: Control byte, always 0 for Taurus
Seq No: Sequence number, can optionally be used to increment for every newly

created message under the given ID. By default this is not used on the
Taurus.

Single Frame CAN YAPP

YAPPmessage payloads less than 8 bytes long (CAN 2.0, 64 bytes for CAN FD) will be packaged
into a single CANmessage with no overhead. The CAN CRC is deemed sufficient for validation of
the entire payload, and thus the YAPP CRC is not sent.

proprietary and confidential 600-0055-000 Rev A page 5 of 19

allocor.tech

Multi-Frame CAN YAPP

Message payloads more than 8 bytes long (CAN 2.0) will be packaged into multiple CAN
messages with the first message identifying the total payload length and the serial framed CRC.
Additionally the CAN ID will identify the start of message, continuation of message, and end of
message conditions.

Below we have a single instance of a Multi-Frame YAPPmsg over CAN showing the start of
frame, 3 continuation packets, and the end of frame.

Candump of Taurus Motor Data Msg

Computing the UART and Ethernet Frame IDs from the CAN ID
The CANmultiframe CRC is computed including the UART frame header in order to allow a
received CAN YAPP to be directly forwarded via another protocol without recomputing the CRC.
This means that the CAN YAPP ID must be able to be translated to an equivalent RS-232 frame
ID.

Briefly, the two sync bytes are added, the sequence and YAPP control fields are rearranged, and
the 11 bit CAN ID is prepended with zeros to form the UART YAPP ID. This rearrangement allows
IDs to be used to assign relative message priorities in CAN arbitration.

YAPP Header Stuffing into 29 Bit CAN Header

proprietary and confidential 600-0055-000 Rev A page 6 of 19

allocor.tech

Multi-Frame Start

The Multi-Frame Start message must set its CAN CTRL field to “1” with a payload consisting of
the payload CRC and payload size.

Multi-Frame Start Example 29 Bit Header

Msg ID (1-2047) CAN Ctrl YAPP Ctrl Seq No

Bits 28:18 17:14 13:8 7:0

Value 528 (0x210) 0x1 0 0

Multi-Frame Start Example Payload

CAN YAPP Multi Frame Metadata

Byte No. 0 1 2 3 4 5 6 7

YAPP CRC Payload Size Reserved

0xBB 0xBE 0x6F 0xC7 0x20 0x00 0x00 0x00

YAPP CRC: 0xC76FBEBB (CRC of the following YAPP Frame Data:
0x595000001002000020000000FD7FFD7FFD7FFD7FF5AFFD7F180100000140000000
00E38CD23CE04E000005FF)

Payload Size: 32 (0x0020)
Reserved: 0

In more detail, the protocol constructs a RS-232 YAPP frame header to compute a CRC against.
The header consists of

● YP (0x5950)
● 2 byte little endian sequence number, zero extended (0x0000 if the sequence number

had been 1 in this example, then the CRC’d value would have been 0x0100)
● 4 byte little endian ID (0x10020000)
● 2 byte little endian packet length (0x2000)
● 2 byte reserved data

proprietary and confidential 600-0055-000 Rev A page 7 of 19

allocor.tech

Multi-Frame Continued

The Multi-Frame Continued message must set its CAN CTRL field to “2”. A series of Multi-Frame
continued messages are expected until the last 8 bytes or less of the YAPP payload are sent in
the Multi-Frame End Message.

Multi-Frame Continued Example 29 Bit Header

Msg ID (1-2047) CAN Ctrl YAPP Ctrl Seq No

Bits 28:18 17:14 13:8 7:0

Value 528 (0x210) 0x2 0 0

Multi-Frame End
The last data packet, consisting of the last 8 or fewer bytes (CAN 2.0, 64 or fewer for CAN FD),
must set its CAN CTRL field to “3”. For CAN-FD, if the data is less than the minimum packet size
then the data will be post-padded with zeros.

Multi-Frame End Example 29 Bit Header

Msg ID (1-2047) CAN Ctrl YAPP Ctrl Seq No

Bits 28:18 17:14 13:8 7:0

Value 528 (0x210) 0x3 0 0

proprietary and confidential 600-0055-000 Rev A page 8 of 19

allocor.tech

CRC Calculation
The YAPP header and message payload is protected with the Koopman Hamming distance 6
order 32 (aka CRC-32K/6.4) cyclic redundancy check. This CRC has a polynomial of
0x1'32c0'0699, is computed with a starting value of 0xFFFF'FFFF, and does not invert the
output.

To verify your CRC calculations you can use an online crc tool, with the parameters shown in the
example below. In this example a
YAPP frame data:

595000001002000020000000FD7FFD7FFD7FFD7FF5AFFD7F18010000014000
000000E38CD23CE04E000005FF

Resulting CRC: 0xC76FBEBB

Example CRC Calculation

proprietary and confidential 600-0055-000 Rev A page 9 of 19

https://users.ece.cmu.edu/~koopman/crc/crc32.html
https://users.ece.cmu.edu/~koopman/crc/crc32.html
http://www.sunshine2k.de/coding/javascript/crc/crc_js.html

allocor.tech

YAPP Data Types
All types in YAPP are defined to be little endian. Floating point numbers, if transmitted raw on
the wire, are IEEE 754. Signed numbers are represented in 2’s complement format.

YAPP Float Compression

Some amount of protocol compression is allowed for floating point types, and is identified by
<min, max> after the type name and width. When a data type is compressed, there are 5
reserved values:

Not a Number max Regardless of signaling or non signaling NaN
Positive Infinity max - 1 Special case of out of range high
Negative Infinity max - 2 Special case of out of range low
Out of Range High max - 3 Initial value was greater than max (but not infinity)
Out of Range Low max - 4 Initial value was less than min (but not infinity)

Float 16 Example

float16 <-10.0; 5.0>would map the following values:

-10.0 -> 0 counts
0.0 -> 43,687 counts
5.0 -> 65,530 counts
NaN -> 65,535 counts

Time

In the allocore framework, time is encoded as signed 64 bit integer nanoseconds. For
embedded platforms like Taurus time will be counted starting from zero at power up. Other
platforms, like the Taurus GUI, may use some other timebase such as monotonic time since
boot, time smeared epoch, or GPS time of week.

Inside the allocortech SDK, this time representation is named RawTime.

proprietary and confidential 600-0055-000 Rev A page 10 of 19

allocor.tech

Taurus Messages
Taurus Command
C++ Struct Name: TaurusCommandMsg

YAPP ID: 0x00

Expected Rate: Greater than 5 Hz
Payload Length: 7 bytes

Byte Name Type Description

0 Enabled uint8 0 – Disabled
1 – Enabled

1 Key uint8 Magic number for extra protection against spurious
commands.
0xA5 – Full Operation
0x5A – No Regeneration Allowed
Other – Invalid, the commandmessage will be ignored

2 Motor Mode uint8 0 – Torque Mode
1 – Speed Mode

3:4 Torque IQ float16
<-200; 200>

Commanded Current, A

5:6 RPM float16
<-100k; 100k>

Commanded Speed, RPM

Taurus Motor Data
C++ Struct Name: TaurusMotorDataMsg

YAPP ID: 0x210

Expected Rate: 10 Hz
Payload Length: 32 bytes

Byte Name Type Description

0:1 Torque IQ
Commanded

float16
<-128; 128>

Commanded Phase Torque, A

2:3 Torque IQ
Measured

float16
<-128; 128>

Measured Phase Torque, A

4:5 RPM
Commanded

float16
<-60,000;
60,000>

Commanded speed, RPM

proprietary and confidential 600-0055-000 Rev A page 11 of 19

allocor.tech

Byte Name Type Description

6:7 RPMMeasured float16
<-60,000;
60,000>

Measured speed, RPM

8:9 DC Voltage float16
<-128; 128>

Measured input voltage, V

10:11 DC Current float16
<-128; 128>

Estimated input current, A

12 Motor
Temperature

float8
<-40; 210>

Degrees Centigrade

13 Motor Mode uint8 0 – Torque Mode
1 – Speed Mode

14:17 Status Flags uint32 0x 2 – FOC in align
0x 1000 – Start in Motion, Back EMF signal not

detected
0x 2000 – Start in Motion, Back EMF signal

detected
0x 4000 – Waiting for motor to stop
0x 8000 – Motor is braking
0x 1 0000 – Motor is stopped
0x 2 0000 – Motor is enabled
0x 4 0000 – FOC in open loop mode
0x 8 0000 – FOC in open loop speed ramp up
0x 10 0000 – FOC in closed loop speed ramp down
0x 20 0000 – FOC in closed loop mode
0x 40 0000 – Motor in reverse direction mode
0x 80 0000 – Motor in Field Weakening range
0x 100 0000 – Motor operating in Over-Modulation

region
0x 200 0000 – Motor Position taken from Hall Sensor
0x 400 0000 – Motor Position is estimated
0x4000 0000 – Flag MPOS: Update motor position

values

18:21 Fault Flags uint32 0x 1 – OC limit higher than measurable
current

0x 2 – CBC OC LPDAC
0x 4 – PWM duty cycle is saturated
0x 8 – Stack overflow or underflow
0x 10 – Open loop speed is lower than

closed-loop minimum speed
0x 20 – Estimator AngleDiff out of range
0x 40 – FOC control time has been exceeded
0x 80 – Bus Voltage Min/Max limit exceeded
0x 100 – PI controller gain out of range
0x 200 – Stall filter value floored at minimum
0x 400 – Estimator SpeedDiff out of range
0x 800 – ATPI Warning -> Check ATPI Status

proprietary and confidential 600-0055-000 Rev A page 12 of 19

allocor.tech

Byte Name Type Description

0x 1000 – Control Freq to Estimator > 10:1
0x 2000 – Hall Timer Period Invalid
0x 4000 – Motor Coast timeout
0x 8000 – EstSpeed/AngleDiff timeout
0x 1 0000 – Motor overcurrent
0x 2 0000 – Motor disabled due to bus voltage

min/max fault
0x 4 0000 – Motor Min/Max Speed
0x 8 0000 – Motor Open Phase Detection
0x 10 0000 – Flash CRC Test Status Failed
0x 20 0000 – Attempted change to critical parameter

while running
0x 40 0000 – AFE not initialized properly
0x 80 0000 – Motor Stall Detection
0x 100 0000 – PPM pulse timeout, no received valid

PPM pulse
0x 200 0000 – ADC calibration failed
0x 400 0000 – Hall Angle Sequence or State is Invalid
0x 800 0000 – Estimator inputs are invalid
0x1000 0000 – Hall timer expired without detecting

hall transition
0x2000 0000 – Start in motion, wrong direction

detected
0x4000 0000 – Hardware exceeded temperature

threshold
0x8000 0000 – Reserved

22:29 Timestamp int64 Nanoseconds since boot

30 Motor State uint8
bitfield

0x 1 – Ready
0x 2 – Running
0x 4 – Stopped
0x 8 – Overmodulated
0x10 – Saturated
0x20 – Faulted

31 ESC
Temperature

float8
<-40; 210>

Temperature of Taurus printed circuit board

proprietary and confidential 600-0055-000 Rev A page 13 of 19

allocor.tech

Taurus Health
C++ Struct Name: TaurusHealthMsg

YAPP ID: 0x200

Expected Rate: 2 Hz
Payload Length: 17 bytes

Byte Name Type Description

0:7 Timestamp int64 Nanoseconds since boot

8 Control Thread
CPU Usage

float8
<0, 100>

Percentage averaged over 1 second

9 Taurus Thread
CPU Usage

float8
<0, 100>

Percentage averaged over 1 second

10 CPU
Temperature

float8
<-40; 210>

Degrees Centigrade

11 Capacitor
Temperature

float8
<-40; 210>

Degrees Centigrade

12 FET
Temperature

float8
<-40; 210>

Degrees Centigrade

13 Vin RMS Ripple float8
<0; 12.5>

Volts

14 Vin Peak to
Peak Ripple

float8
<0; 12.5>

Volts

15 Taurus Status uint8
bitfield

0x 1 – Regeneration Enabled
0x 2 – Reversed
0x 4 – Precharging

16 Board Revision uint8 Used by Taurus firmware to distinguish hardware
revisions and appropriately configure I/O

proprietary and confidential 600-0055-000 Rev A page 14 of 19

allocor.tech

Examples
UART Stream Framing
This is an example Taurus Motor Data message.

Header

SYNC Seq CTL ID Size RSVD

0x59 0x50 0x00 0x00 0x10 0x02 0x00 0x00 0x02 0x00 0x00 0x00

Payload

Current
Command

Current
Measured

RPM
Command

RPM
Measured

DC Voltage DC Current

0xFD 0x7F 0xFD 0x7F 0xFD 0x7F 0xFD 0x7F 0xF5 0xA5 0xFD 0x7F

Payload (cont)

Motor
Temp

Motor
Mode

Status Flags Fault Flags

0x18 0x01 0x00 0x0
0

0x01 0x40 0x00 0x00 0x00 0x00

Payload (cont) CRC

Timestamp Motor
State

ESC
Temp

0xE3 0x8C 0xD2 0x3C 0xE
0

0x4E 0x00 0x00 0x05 0xFF 0xBB 0xBE 0x6F 0xC7

proprietary and confidential 600-0055-000 Rev A page 15 of 19

allocor.tech

Single CAN Frame: Taurus Command
Candump of Taurus Command Msg

Single Frame Example 29 Bit Header

Msg ID - 11 bits for 2047 IDs (1-2047) CAN CTRL

Value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit
No.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

YAPP CTRL Seq No

Value 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit
No.

15 16 17 18 19 20 21 22 23 24 25 26 27 28

Msg ID: 0 (Default Msg ID For Taurus Command)
CAN CTRL: 0 (Single Frame)
YAPP CTRL: 0
Seq No: 0
Combined header: 0x00000000

Single Frame Example Payload (7 Bytes)

CAN YAPP Single Frame Payload Data

Enable Key Motor
Mode

Torque
Command

RPM
Command

0x01 0x5A 0x01 4F 80 F3 80

Byte
No.

0 1 2 3 4 5 6

Enable: 0x01 (boolean, 1=enabled)
Key: 0x5A (magic number for extra protection against spurious commands,

overloaded to encode for regen disabling, 0xA5 = Full Operation, 0x5A = No
Regen)

Motor Mode: 0x01 (0 = Torque Mode, 1 = Speed Mode)

Torque Cmd (Cnts): 0x804F (32847 counts)
Float16<-200, 200> (200 - (-200)) / (2^16 - 5) = 400 A / 65531 counts = 0.0061 A / count
Torque Cmd (A): 32847 counts * (0.0061 A / count) + (-200A) = 0.4975 IQ Current Amps *

* When in speed mode the torque command is ignored

proprietary and confidential 600-0055-000 Rev A page 16 of 19

allocor.tech

RPM Cmd (Cnts): 0x80F3 (33011 counts)
Float16<-100k,100k>: (100,000 - (-100,000)) / (2^16 - 5) = 200,000 RPM / 65531 counts =

3.052 RPM / count
RPM Cmd (RPM): 33011 counts * (3.052 RPM / count) + (-100,000 RPM) = 749.26 RPM

proprietary and confidential 600-0055-000 Rev A page 17 of 19

allocor.tech

Multiple CAN Frames: Taurus Motor Data Msg
Candump of Taurus Motor Data Msg

Multi-Frame Start Example Payload

CAN YAPP Multi Frame Metadata

Byte No. 0 1 2 3 4 5 6 7

YAPP CRC Payload Size Reserved

0xBB 0xBE 0x6F 0xC7 0x20 0x00 0x00 0x00

YAPP CRC: 0xC76FBEBB (CRC of the following YAPP Frame Data:
0x595000001002000020000000FD7FFD7FFD7FFD7FF5AFFD7F180100000140000000
00E38CD23CE04E000005FF)

Payload Size: 32 (0x0020)
Reserved: 0

Multi-Frame Continued Example Payload

CAN YAPP Multi Frame Payload Data

DC Voltage DC Current
Amps

Motor
Temp

Motor
Mode

Status Flags
(partial)

0xF5 0xAF 0xFD 0x7F 0x18 0x01 0x00 0x00

Byte
No.

0 1 2 3 4 5 6 7

DC Voltage (Cnts): 0xAFF5 (45045 counts)
Float16<-128, 128> (128 - (-128)) / (2^16 - 5) = 256 V / 65531 counts = 0.0039065 V / count
DC Voltage (V): 45045 counts * (0.0039065 V / count) + (-128V) = 47.97 V

DC Current (Cnts): 0x7FFD (32765 counts)
Float16<-128, 128> (128 - (-128)) / (2^16 - 5) = 256 A / 65531 counts = 0.0039065 A / count
DC Current (A): 32765 counts * (0.0039065 A / count) + (-128A) = 47.97 V

Motor Temp (Cnts): 0x18 (24 counts)
Float8<-40, 210> (210 -(-40)) / 2^8 - 5) = 250 °C / 250 counts = 1 °C / count
Motor Temp (°C): 24 counts * (1 °C / count) + (-40 °C) = -16 °C *

* Note the motor thermistor was not connected so the temperature from
this example wasn’t valid

proprietary and confidential 600-0055-000 Rev A page 18 of 19

allocor.tech

Motor Mode (Cnts): 0x01 (1 count)
Enum 0x00 = Torque Mode

0x01 = Speed Mode
Status Flags: 0x00 0x00 0x01 0x40 (only first two bytes are included in this frame)
Status Flags(32): 0x40010000
Status Flags: Motor Stopped Flag, Update MPOS Flag

Multi-Frame End Example Payload

CAN YAPP Multi Frame Metadata

Timestamp (partial) Motor
State

ESC
Temp

0xD2 0x3C 0xE0 0x4E 0x00 0x00 0x05 0xFF

Byte
No.

0 1 2 3 4 5 6 7

Timestamp: 0xE3 0x8C 0xD2 0x3C 0xE0 0x4E 0x00 0x00 (only last six bytes are
included in this frame)

Timestamp(64 signed): 0x00004EE03CD28CE3
RawTime (nsec): 86725000072419 nanoseconds (24.09 hrs)

Motor State: 0x05 (0b 0000 0101)
Motor State(Flags) Ready, Stopped

ESC Temp: 0xFF
Float8<-40, 210> *Nan (one of the 5 reserved values at the top of the range)

*ESC Thermistor was not in place on this unit

proprietary and confidential 600-0055-000 Rev A page 19 of 19

